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ABSTRACT

A spatial stability analysis is performed for the boundary layer over a non-

isotropic compliant surface. A simple mechanical model is used for the surface.

Surface properties which may lead to boundary layer stabilization are determined. P.1,

A spectral approximation is used to obtain a solution of the equations gov-

erning the normal velocity component of a small dikturbance. The streamwise

wavenumber becomes the eigenvalue in the nonlinear eigenvalue problem formed.

The resulting solution spectrum contains values which indicate the growth rates '

of the Tollmien-Schlichting and flow-induced surface instabilities. It is shown that

the Tollmien-Schlichting instability is most sensitive to changes in the surface prop-

erties. Previously it has been suggested that an attempt to stabilize one class of

instability tends to destabilize the other class. It is shown that varying the surface

properties can reduce the growth rate of the Tollmien-Schlichting instability but -.V.

has little effect on the flow-induced surface instability.

The surface properties are "optimized" using a minimization algorithm. It is

found that appropriate surface properties lead to a decrease in the growth rates

of the flow instability. Although this approach may be used it is more expensive

computationally than a simple property variation approach. ,

The simple mechanical model for the compliant surface may be represented by

an elastic plate over spring-rigid supports. The functional relationship between the

flexural rigidity, thickness, and modulus of elasticity of the plate provides a means

to vary the properties and determine the effect on the instabilities. It is found that

by keeping the flexural rigidity essentially constant and simultaneously increasing

the plate thickness and decreasing the modulus of elasticity a decrease in the growth 6

rate of the Tollmien-Schlichting instability is obtained. Alternatively, by keeping
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0 the plate thickness and modulus of elasticity essentially constant and decreasing the

flexural rigidity a decrease in the growth rate of the Tollmien-Schlichting instability

results. Throughout this analysis little variation is found to occur in the growth

rates of the flow-induced surface instability.

Finally, the angle between the rigid support-arm and the horizontal in the

mechanical surface model is varied while holding the surface properties constant.

* It is shown that an angle choice of between 0 and 50 may significantly decrease the

growth rate of the Tollmien-Schlichting instability.
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CHAPTER 1 ,p.0
INTRODUCTION

This thesis is devoted to identifying non-isotropic compliant surface properties Vr

which produce a delay in the transition to turbulence for hydrodynamic applications. J

This involves using a simple mechanical model for the surface. A disturbance is

introduced in the boundary layer in the form of a travelling wave. The streamwise

wavenumber of the disturbance becomes the eigenvalue for the nonlinear eigenvalue

problem formed. A measure of the instability growth rates is found in the solution

spectrum. While the surface properties are varied the least damped wavenumber

is tracked to indicate the effect felt by the instabilities. It may be shown that a

proper combination of surface properties can lead to boundary layer stabilization.

The transition of boundary layers from laminar to turbulent is due to insta- 0

bilities that develop in the boundary layer. For low Reynolds number flows, the

viscosity is dominant and provides a means to damp-out the instability. As the k
Reynolds number increases the natural damping becomes insufficient to maintain

laminar flow. Waves buildup and eventually turn turbulent. With the onset of

turbulence the boundary layer thickens and drag and noise levels increase. In or-

der to delay this effect it is desirable to introduce a passive, "artificial" damping

mechanism. This may be accomplished by modifying the surface in contact with

the boundary layer.

A major incentive for using a surface other than a rigid wall was brought about

by experiments performed by Kramer J1,21 in 1960. By using a rubber coating on-Ne-

a rigid plate, he obtained drag reductions. From his experiments, he concluded: .

(1) the surface induced artificial damping is a means for boundary layer stabi-

lization: (2) the dimensions and properties of the elastic coating for an average

,-'p
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Reynolds number and speed may be obtained through a simplified theory of dis-

tributed damping; (3) up to a 60 percent drag reduction was realized for the coated

surface compared to an uncoated identically shaped model; (4) laminar recovery is

possible behind surface imperfections which would normally lead to transition; (5) to

no performance losses occurred due to water impurities; and (6) as the Reynolds

number increases the effect of damping should increase due to the improved contact

between the boundary layer and wetted surface. Much skepticism has mounted

in reference to the results of Kramer since experimental duplication has yet to be

realized. * 1 .

Important understandings of the instabilities occurring over a flexible surface

have been brought about by the contributions of Benjamin [3]. His classification

of disturbances over a flexible surface was due in part to a stability discussion by p-

Lin [4,5,6] for two-dimensional parallel flows and the analysis by Miles [7,8,9,10] on

surface wave generation by shear flows. Landahl Jil[ and Benjamin [12,13] further

identify distinct characteristics which seperate the modes of instability into three

classes: Class A, Class B, and Class C. The Class A instability is realizable in the

presence of viscosity and is essentially a Tollmien-Schlichting instability modified .,

by the flexible surface. The waves are associated with a decrease of the total kinetic , .

'a energy of the fluid and elastic energy of the wall. Dissipation serves to increase S

the wave amplitude to compensate for the energy loss. The waves are identified

as having a speed less than the velocity of the free surface waves as was discussed 0 b. 

by Grosch and Salwen [141. A Class B instability may occur irrespective of the

presence of viscosity and is presumed similiar to waves induced by wind over water .

surfaces. Dissipation in the wall tends to stabilize the wave. The instability may be

recognized by a speed greater than the free surface wave. And a Class C instability is

realized where the effective stiffness of the panel is too low to withstand the pressure

% a.-P

'p.
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3

forces induced on the flexible wall. This instability is more commonly referred to as

a Kevin-Helmholtz instability and occurrs when conservative hydrodynamic forces V

cause a unidirectional transfer of energy to the solid.

Grosskreutz [15,16] introduced a new approach in 1971 which focused on the

control of boundary layer stabilization by the use of non-isotropic compliant coat-

ings. His experiments show that compliant coatings may lead to an increase or

decrease in momentum thickness which corresponds to an increase or decrease in

drag, respectively. So depending on the properties of the compliant coating favor-
: .PK

able effects mav be obtained or adverse effects may become dominant.

Carpenter and Garrad {17,18 sought to remove the skepticism formed with

respect to the isotropic, Kramer-type surface and expand on a numerical model

representing the surface. They argue that a Kramer surface does have potential

for transition delay and the reason skepticism arose was due to deficiencies in the

opposing investigations. Also, the classification established by Benjamin was sim-

plified, or reclassified, to the following two instability classes for a boundary layer.

These are the Tollmien-Schlichting instability (TSI) and Flow-induced surface in-

stabilities (FISI). The FISI is basically the Class B instability of Benjamin and

Landahl. They explain that the Class C instability is not found due to boundary

layer effects. In the analysis of viscous substrates, Carpenter and Garrad concluded

that a stabilizing effect is found for TSI in the presence of a substrate and where

the two modes coalesce viscous substrates reduce the growth rates of instability.

The specific effect on boundary layer stabilization by a viscous substrate under a

Kramer-type surface was investigated by Carpenter, -aster and Willis 19!. It was

found to reduce the growth rates of the Tollmien-Schlichting instability.

Carpenter 120,211 arrived at optimum surface properties for the isotropic case

which resulted in growth rates of instability less than the rigid wall case. Carpenter

S."#
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[221 for the non-isotropic case identified a range of desirable surface properties.

Carpenter and Morris [231 for spatial wave growth and later Carpenter 1241 for

temporal wave growth observed growth rates of instability for tile non-isotropic

,, compliant surface less than the rigid surface. Morris 1251 obtained a slightly modified

model which enabled a decrease in the nonlinearity of the eigenvalue problem of 123]

and 1241 from an order of six to five in the eigenvalue parameter. This model is

extended in the present discussion to a spatial stability analysis to identify optimal

surface properties which may lead to boundary layer stabilization. 1

The equations governing the stability of flow over a compliant surface are de- -"

rived in Chapter 2. This results in the Orr-Sommerfeld equation where the depen-
I

dent variable is the cross-stream velocity component of an infinitesimal disturbance.

A simple mechanical model for the non-isotropic compliant surface may be repre-

sented by an elastic plate over spring-rigid supports. The model is chosen to mimic

the behavior of a compliant coating such as that designed by Grosskreutz. The

coating consists of a thin rubber-type material covering stubs of a similiar material

and a viscous substrate fluid surrounding the stubs. The equations governing the

motion of an element of this plate together with appropriate far field conditions

form the necessary boundary conditions to close the problem.

A spectral method approximation is introduced in Chapter 3 as a means of
I

numerical solution. The resulting matrix of equations forms a nonlinear eigenvalue

problem of degree five in the eigenvalue parameter. Methods of solution are then V

discussed. A model problem with a known solution is introduced to verify the

accuracy of the numerical methods. P

In Chapter 4. the solutions to the eigenvalue problem are discussed for the

model problem and rigid wall and compliant wall boundary layer cases. A compar-

ison between the rigid and compliant case is presented along with the effect and

I

. .. ,.. __=.-,, m~, . .. t ,.. L~ 
i
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added cost arising due to the addition of compliance.

In Chapter 5, the means of obtaining a measure of the sensitivity of an eigen-

value to surface property changes is presented and an accuracy comparison is made

with a finite difference approximation.

In Chapter 6, the methods of surface property optimization are formulated.

The effect of surface property selection for boundary layer stabilization is then

shown. The results are presented giving a range of property values which may lead -r
S

to a delay of transition.

-'%
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CHAPTER 2

PHYSICAL DESCRIPTION AND DERIVATION OF PROBLEM .. .*
4'. ". 'g

2.1 Introduction

Theoretical investigations into the initial stages of transition are based on the

assumption that laminar flows are affected by small disturbances. For a boundary

layer on a solid body, these disturbances may physically be due to wall roughness

or irregularities in the external flow. The question to answer is whether the dis-

turbances increase or decay in time and space. If the disturbances decay, the main

flow is considered to be stable: alternatively, if the disturbances increase the flow

is considered to be unstable and it is argued that this then leads to transition into

turbulent flow. In this section the theory of linear stability is developed with the

object of determining the flow conditions which may lead to transition.

2.2 Governing Equations

The problem to be addressed is that of a boundary layer over a smooth, solid

surface immersed in an incompressible, uniform flow with constant velocity and

pressure. The equations governing the flow are the non-linear Navier-Stokes equa-

tions

a9u au all au ! ap (d2u 32u 02(u9 U-+ U + V + -+ + j + -- (2. 1a).'-,

a9t ax a9y a9z pa \.x (9X 2  (az2)

a",v av agv av 1(0 a Ov a:v a~v\ "*
-9 - u9 9 9 1 - --5+-V (2.1b)

at a h a a V ax4Y 0Z P(y (X 2  (9y2 dz 2 /

a9W a a a (9 9 aW1(p (W a (w aw
+. U + 21 (2.lc)
a o x a9y 5z pa a9 (X2  a2 (9
-- + u -4- v - = 0, } (2.12)"'

au d~v dw •

9x 9y dz

e2S



7

where u, t', w, and p are instantaneous flow properties. In stability theory of laminar

flows an infinitesimal disturbance is introduced on to the laminar flow solution. %. 01-

Hence, the resulting motion has components

0
u(X,y,z,t) U(x, y,z,t) + u'(x,1Y,,,t) (2.3a)

v(x, y,z,t) V (X, y,z,t) + v'(x, y,z,t) (2.3b)

0

p(x, y, z, t) P(x, ,z, t) + p'(, y, z, t), (2.3d)

where u'. v' , w' and p' are the disturbances and U, V, IV and P are the laminar flow

solutions. Equations (2.3) are substituted into (2.1) and (2.2). It is assumed that

the undisturbed flow is a solution of the Navier-Stokes equations and that nonlinear

terms in the disturbance are neglected. The remaining terms result in'differential •

equations governing the disturbance. In boundary layer flows further stipulations

may be made which simplify the governing equations. The motion is essentially

two-dimensional since Squire 261 showed that the two-dimensional flow analysis is

more critical than three-dimensional: the undisturbed streamwise velocity depends

on y only (i.e.. U = U(y)); and the remaining two mean components, V and 1,. are .

everywhere zero. These stipulations describe a class of flows known as parallel flows.

Boundary laver flows may be regarded as a good approximation to a parallel flow

because the dependence of the velocity, U, in the streamwise x-direction is much

smaller in comparison to the cross-stream y-direction. The resulting components of •

motion (2.3) may be simplified to

U ( y) -u'(X. y, t) (2.-1a)

, ?, (X. y') (2.4 b)
.'.

'." ." - "" "" ". ". -""."." -.- . "- " ". ". ".e": ., .- ." ." "- "
.

". ". ". ". " ,". " ,',,- ," , --' ,""- ",,
"

°' . ,' ,% '• ,% ,' "''-,, ,'" . -, . ,,'", .", .". ,Ii'
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W = 0 (2.4c)

p = P (X)+ p, (x,y, t). (2.4 d) .. j

By substituting (2.4) into (2.1) and (2.2), the resulting equations describe the
ditrac na boundary layer.

U' d,' , U 1dp' u' o ,'1(2.5a)0-9 +  -(9x dy - p (x + 'L5X -2 + - -u (2.Y2

at a p y2' ' 1 ap;a"
a2 y(2,2.b

0--7 + U -9 P o9 + V L X + o(9Y2. ) ,.

--+ - 0  (2.5 c)O9x ay '"

It is also assumed that far from the wall in the cross-stream direction the distur-

bances vanish.

u,v',p' -0 as y o (2.6)

This assumption is necessary to satisfy the physical condition and is suitable for

securing boundary conditions for the resulting boundary-value problem as will later

be shown.

The disturbance is assumed to be a wave which propagates in the x-direction.

The stream function representing a single oscillation of the disturbance is assumed

to be of the form

ti'(x, y,t) = (Jr 6" (y)et(X - t), (2.7)

where the wave-length of the disturbance is A = 27r ,' and the frequency of the dis-

turbance is .. The nondimensional distribution. o. is dependent on y only since the %

• •., .d

S ¢,

p ~ * % S * ~ .~'. % -.% 8 -
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mean flow depends on y only. The components of the velocity perturbation which

are obtained from (2.7) mav be defined as partial derivatives of the streamfunction

and given as

Ii -6y - ' (y) e ' ( Ck X- W )  (2.8a)
Ow .J.

V - a' (2.8b)
(9x

where the hat represents nondimensionalized disturbances and primes denote deriva-
S

tives with respect to y. Eliminating the pressure from (2.5) and substituting (2.8)

into (2.5). a fourth-order, ordinary differential equation results for the cross-stream

velocity disturbance. This is given by

,l -A- a(y)i," - b(y)' 0, (2.9)

where_ a(y) - iR(&U(y) - - 262

b(y) =iR&(j(Y) - R) + iRaU"(y) + &4.

This equation has nonconstant coefficients and is commonly referred to as the Orr-

Sommerfeld equation which is the stability equation for small disturbances in lam-

inar flows. The equation has been nondimensionalized with the boundary layer

displacement thickness, 6', the free-stream velocity, U,,, and density, p,. The

Reynolds number is given bv

R - (2.10)
t)

With equation (2.9). four appropriate conditions are required to obtain a so-

lution for the disturbance. From (2.6) where the disturbances vanish as infinity is .

approached in the cross-stream direction two boundary conditions result.

* .~ - . . . - - * a .-. .- ,

(Y - • 3

- i'i? Z
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In the section following, the remaining two boundary conditions necessary to

solve (2.9) will be obtained. These are the equations describing the disturbance at

the compliant surface.

2.3 Compliant Boundary Conditions:

A simple mechanical model for the non-isotropic compliant surface may be

obtained from Morris [25]. This is a revised formulation of Carpenter and Morris

[231 and Carpenter ]241. The concepts of the model and derivation of the equations

d. of motion for the disturbance at the surface follow and conclude with the desired

boundary conditions. The model consists of a thin, elastic plate supported by

hinged and sprung rigid members inclined to the horizontal at an angle 0 when in S

equilibrium. A sketch showing the model is given in Figure (2.1). The motion of .

the surface is treated such that each element of the plate oscillates in a pendulum

like motion at the end of its rigid member. In equilibrium, the rigid members are S

assumed at rest. The distance between each member is assumed smaller than the

wave-length of a disturbance normal to the rigid member. An equation of motion

for a surface element is desired which satisfies the constraint that the total force

acting on the surface by the mechanical forces is equal to the forces caused by the

external fluid motion on the surface. Such an equation may be given by

32 (y 690) (94, ( 2
p 0,b B cos9±KC 60 -Eb-snOat 2  a3X 4  &X2

'cosO -4- a'cosO + r'sznO, (2.12)

where the terms on the left hand side of (2.12) refer to mechanical forces and the

terms on the right refer to fluid motion forces due to viscosity and pressure. For

the case of an isotropic surface, viscous interaction on the the right side is neglected
ad 0]" and 9 :i 0. -.

S-,
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The physical meaning of each term is given respectively as

(1.) rate of change of momentum of the surface element
(2.) resistance due to bending stiffness of platei

(3.) resistance due to spring stiffness

(4.) tension force induced by relative motion of adjacent rigid members

(5.) force due to dynamic pressure fluctuations
(, f c .l

(6.) force due to viscous normal stress fluctuations

(7.) force due to viscous shear stress fluctuations ""..,

The variables in (2.12) may be defined as: x and y are the streamwise and cross-

stream coordinates: q and 0l correspond to the streamwise and cross-stream surface
0

displacements: 60 is the angular displacement of the element relative to equilibrium;

f is the rigid member length; pm and b are the plate density and thickness respec- -

tively; B and E are the flexural rigidity and modulus of elasticity of the plate; K is

the spring stiffness; and p'. a', and r' are the pressure. viscous normal stress, and .. -

viscous shear stress fluctuations on the plate respectively.

The necessary equations of motion for the surface element are coupled by a

relationship between the normal and tangential motions (rl.) with the angular

displacement. 60. This relationship may be given by

= bOsinO and r f 6OcosO, (2.13)

or

t 60 rl7cosO and i = tanO. (2.14) S

The normal displacement of the surface is assumed to take the form

-  (2.15)-

IS

J%'
0 0



at ax"

or linearized: r-- = i ).

An alternative form results by letting e M 5 be represented in a similiar manner :

as the normal displacement (2.15). This results in ,

0

= -i~cosO . (2.17) .,.

The continuity equation for the tangential motion of the surface element implies .

~:.

U + U'-Ot - 'sinOt at y ?7r, (2.18) :!'i,:,

or linearized: U/'r7 + u/ = 2sinO. ':"6 t t
The linearization occurs at y =0. Substituting appropriately (2.14), (2.16) and ""

fi - i- into (2.18) yields

',

S-..

-i(Uf (O)cosO + i' sinO)O + jcosOf' =0. (2.19) ''''

Equations (2.12), (2.16), and (2.19) are the resulting equations of motion and 0 '

boundary conditions. Since the normal and tangential surface motion is coupled

atcO 4- arO +v at y (2.26)

An aleratifor m eslmt d le i ly .~ 6bereetdinasmirmne

as qnormal uA2.~12)in (2.15).sona frsultas asin

0 = - ScosO 5oO 7.iO (2.17) ,

* ,

' " '-'" k" " '% 'x~t" "". , "'' """ ' -" "?r " " - -' "- '= ' " ' '- '' '-" " ' " . .. , ' - -5'-
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where

pM b B K6V Eb
PbCM CB C3 CK p,U and CT = 6,'Pob PoU003 00p 0 vcc

The normal viscous stress perturbation is given by

9v'
o' (2.21a)

or nondimensionally •
2

*-v. (2.21b)

The viscous shear stress perturbation is given by
'K4.

' u+ -), (2.22a)

or nondimensionally •

= L(O" + 0.) (2.22b)

The pressure perturbation is found from the linearized cross-stream component of

the Navier-Stokes equations

5"cW + -a-U' + "'2U, ,-i2f1 (2.23a)

ii &( 4 'O2 6Rt). (2.23ab) .
* or9

From the continuity relations the following may be defined "%

,.. %,.. -~

-(2.24)

4 - (-/"g-cosO + i--siO' + U .2'
41 

*,4d

,:,:,j"

S"

cos ± -,inO . . .-.. . . . . . ,
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ON

Substituting (2.21), (2.22), (2.23), and (2.24) into (2.20) and collecting terms with

similiar powers of d, the following boundary condition results.

d [CBCOSOV(0)1 ± d [C-rsin 2Oi3'(0)]

2 [(2-jsinO - 3 .U(0)osO) R i'(O)

( -
2C M) O'(O ) + (U '(O )co S6 + s in (0nk

cosO ,,,

+i(U'(O)cosO + z'UsinO) -- 1-"(O) - iJ 2 snOcosWO'(O) = 0 (2.25)
R

The final boundary condition is given by equation (2.19) which is

d(U'(O)cosO + iisinO)O(O) + iicosO'(O) 0. •

The equations of motion governing the stability of the flow over a non-isotropic

compliant surface for the cross-stream velocity component of the disturbance have

been derived. The means of obtaining the solution will be described in the next

chapter. For convenience, the overbar on U representing the Blasius solution will

hereafter be neglected.

5

.-. -
4-4"-2
,° 4'

.*.,9M

-.- v .-. ., .--.. , ..•,. , -,. , .. .. .. ; .' :, .- : ..: .: .. ...;. '. .. .'. -.: .. , , .. ..: ' -: , '_, ..: . --, .' :' ,S :
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CHAPTER 3

NONLINEAR EIGENVALUE PROBLEM

3.1 Introduction

In the previous chapter a detailed analysis was performed to arrive at a math-

ematical representation of the physical problem, namely the stability analysis of "-p

flow over a compliant surface. The present chapter will formulate the equations

into a form suitable for obtaining a numerical solution and describe the methods of .

solution.

A

3.2 The Orr-Sommerfeld Problem

In hydrodynamic stability theory, the Orr-Sommerfeld equation (2.9) governs

the normal velocity component of the disturbance imposed on the flow. The so- 0

lution will give the characteristic instabilities present for a time or space varying "

analysis. The problem at hand varies in space and is referred to as a spatial stability

problem. The wavenumber, 6 , is complex and is taken to be the unknown eigen-

value. A negative imaginary part of Z indicates that the solution is growing in the "p

streamwise direction. This is an indication of an instability growth present in the '

flow. A zero imaginary part suggests that the solution is neutral. And a positive

imaginary part suggests that the solution decays in the streamwise direction. The

frequency, a, and Reynolds number, R, are both real and specified. The alternative

problem in stability theory which will not be solved in this study is time varying,

or temporal. In such, i and R are both real and specified while the frequency

is comple.x and becomes the unknown eigenvalue of interest. The frequency and

wavenumber are related and together form the phase velocity, c, which is defined 0

as c W/ a.

• • .jS
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The problem of boundary layer flow over a flat plate is an eigenvalue problem in

6 and is said to be nonlinear to a degree of four in the eigenparameter. The problem

at hand is nonlinear to a degree of five where the added degree of nonlinearity is

introduced in the boundary condition (2.25). The nonconstant coefficients result

due to the streamwise component of the Blasius velocity profile the solution of

which is only known numerically. So the eigenvalue problem must also be solved

numerically. The technique used to formulate the numerical approximation was

previously used by Bridges and Morris 127,281 and Bridges 129J in the solution of

the fourth-order nonlinear eigenvalue problem for the flow over a rigid surface. The

reason for such an approach will be made evident.

The domain of the equation is from zero at the surface to infinity in the cross-

stream direction. In order to solve the problem numerically, the domain may either

be truncated or transformed to some finite domain. Grosch and Orszag 301 have

performed a study of this subject and suggest an algebraic transformation

y- L 14-z
and y L a3.l,.b)

where -I -, 11 and y , 0.c). In this analysis a valueof " will be

used and is suggested as optimum by Bridges for the rigid surface probler. The

corresponding metric arrived at is

n(Z) dz (1 - : .
dy 2L

A far field condition (2.7) in the transformed domain appear, as

rn(z)i.,(z) z 1_ ) .t': • os ,i.•1(;.l -"

2L dZ-

% %
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This introduces an ambiguity as to the value of Ct(1) since the metric approaches 5%

zero as z -, 1. In order to temporarily avoid such a problem, a nondimensional
. . . * =

dummy variable, (z) , is introduced and defined as ,
**p ,

-mu'. (3.4)

Making the appropriate substitutions of (3.2) and (3.4) into (2.9). the Orr-

Sommerfeld equation in the transformed domain may be written as

--.,,-

rn ')(M- a (z)c' -b(z) 0, (3.5a)

where

a(z) - iR(-iU(z) - - (3.5b).

b(z) = iR&(aU(z) - 1) + iRm(mU'(z))' -& (3.5c)

with far field conditions .5.

f'I) C(1) 0 (3.6ab)

S."

and cornpliant boundary conditions

sin.-..e.

L R
-- [CI "o o_ -)1

((,i 'K -( i ., ) ( -1 ) -(c o , "U ( - ) .,1 .s no) ' (-- - 1 ) ,:: :

,( o"1  
'( I ,1.s,,o) c -. ( 1) - ,i.2.s,1o.1( -')1 -z (3.6c) 0

L "

%.

.ebP .- -. .
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and
"d(cosOU'(- 1) + i'Fsi'nO) ;1)+ EcosO 1-) 0, (3.6d)

" where the nondimensional, constant coefficients were previously defined as

,,p. ,/..*.-

pmb B K6" Eb K"
CM - , CB- CK- and C T -•p 6 ' p U 1 6- ' Po U 2 PoU 2 6 " .5

The primes in (3.4)-(3.6) denote derivatives with respect to the transformed vari-

able, z, and U(z) is the Blasius streamwise velocity profile in the transformed do-

main. A plot of the Blasius profile versus the transformed variable, z, is shown in

-/ Figure (3.1). In the limiting case where C 1 - o- , the compliant problem becomes

a rigid wall problem.

A spectral approach known as a finite Chebyshev series expansion is sought for

the solution of (3.4)-(3.6). A spectral expansion is an approximation of an unknown

function by a series of known functions which satisfy the boundary conditions.
-- .5':.

Gottlieb and Orszag 1311 and Fox and Parker 1321 discuss in detail the advantages

of such an approximation and give various examples. Gottlieb and Orszag state

that a Chebvshev polynomial expansion gives a good representation of functions

that undergo rapid changes in narrow boundary layers. One reason is that the

polynomials can resolve changes over distances of order n - where n is the number of .

Chebyshev series terms retained. Also, for the Chebyshev series expansion the error

converges exponentially in comparison to finite difference methods which converge

1 algebraically.

With this in mind, the Chebyshev series expansion for the disturbance in equa-

tions (3.4)-(3.6) may be given by

5, "-, -,
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N
0(z) 1: 'vT,(z) (3.7)

and % ,•

n==O

The prime on the summation signifies that the leading term of the series is to be

halved. The Blasius velocity profile is expanded in a similiar series.

U (z) : u ,, (z...(3..:.,

~t=O

Details on how a known function may be represented by a Chebyshev series expan-

sion may be found in Appendix A and in Appendix B specifically for the Blasius

solution.

Due to the properties of Chebyshev polynomials it is convenient to pose equa-

tions (3.4)-(3.6) in integral form. As such, the following equations result.
...-.. ,

I IMn, - m', = + e,, (3.10)

and

I I bt, +el + e2 z + e3 - 0 (3.11)

where a(z) and b(z) are given by (3.5b) and (3.5c), and

.3.

P"(z) m 3  (3.12a)

,',,,S ,
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P, (z) =- 6mn2 m' (3.12b)
0

P2 (z) = 7m (m ')2  4m '2m " (3.12c) "-r.

P3 (z) =- (m(mm')')' (3.12d)

0
In connection with a Chebyshev series expansion, the Tau method which was

introduced by Lanczos in 1938 will be used to remove the constants of integration.

A detailed explanation may be found in [311 and 1331, but at present only a brief

outline of the method will be presented without proofs. .

The series approximation of a function, (z) or v(z), previously introduced in

(3.8) and (3.7) has k additional terms added to it where k represents the number of ";"-e

independent boundary constraints that must be applied (i.e., one and three in this
a4.

particular problem). The resulting approximation is the exact solution to a slightly

modified problem. This results in N + 3 unknowns for N + 2 equations and one

boundarv constraint for equation (3.10) and N + 7 unknown coefficients for N + 4

equations and three boundary constraints for equation (3.11). Respectively, the

equations involving the coefficients of T0 (z) and T 0 (z),T, (z) and T 2 (z) for (3.10)

and (3.11) serve to determine the constants of integration only and so may be

disregarded for the present analysis. The added "tau" terms need not be explicitly

calculated either. The remaining system is composed of N equations with one

boundary constraint and N - 2 equations with three boundary constraints. The

two systems of equations when combined result in a square N4 1 matrix of equations

as will be shown.

Using the Chebyshev product and integral formulae, the series expansions (3.7)-

(3.9) and the metric (3.2), represented by the following Chebvshev series

31 1 -0.-
m(z) -TT, (z)+, (3.13)

2L -LTz 1L)

"0, '
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are substituted into equations (3. 10) and (3.11). This results in a set of equations

*with the vectors of unknown Chebyshev coeffic,its. c)} and {t' . Using the far%

field condition. c(I) 0 .with equation (3.10). the following relation is found.

{ z} -- Tl{u} (3.14)

{ }and {t' are column vectors containing unknown Chebyshev coefficients and ITI

is a square NV I4 matrix. The remaining tfiree boundlary conditions with equation

(3.11) give V

Fj 1 V 5 - 0j0

SCj 5 i {v - DO~k ~}~} (3.15)

k~r I W

where jCk] and (Dk I are complex square matrices of order N±+I which are functions

of, R and the compliant boundary condition properties. The dummy vector. ,

may be eliminated from (3.15) by the substitution of (3.14). The following nonlinear

eigenvalue problem results,

D5(0VJ ~j, 3.16

where

D5s(6) ~C4 dC~±2  'C 2 ±C~4 +C 5. (3.17)

This forms ti)e Chebyshev discretization of the Orr-Sommerfeld equation over a

compliant surface.
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3.3 Solution of the Nonlinear Matrix Eigenvalue Problem

The eigenvalue problem considered is nonlinear in d to the degree of five where ..

the highest degree of nonlinearity is introduced in the boundary condition. The

system. D5 (a). may be referred to as a lambda matrix. Since one boundary condi-

tion is independent of d it may be eliminated using appropriate column operations; .%

thus, the problem is reduced to N equations and N unknowns, or a system of com-

plex square matrices of order N. For the solution of the lambda matrix, three global

methods and one local refinement method will be considered. A global method

is global only in the sense that an initial guess for the eigenvalue determination is

unnecessary. In a local method an initial guess is required. The global methods are:
S

(1) linearization by a companion matrix, (2) factorization with Bernoulli iteration

to obtain a subset of the spectrum, and (3) factorization with Traub iteration to

obtain a subset of the spectrum. The local method is a refinement of Newton's

method derived by Lancaster 134] for a single eigenvalue.

The companion matrix method has been used for the Orr-Sommerfeld problem

by Benney and Orszag '35. Bridges and Morris j331 and Gohberg, Lancaster and

Rodman 36] discuss both the companion matrix method and factorization. From

such. the analysis is extended to the larger system at hand. The companion matrix

is a linearization of the lambda matrix and therefore is of a larger order. If rn is

the order of the matrix svstem, D.5(d), then the order of the companion matrix is

5m. When a differential equation is formulated as a matrix problem, it takes on

the form of

Ax ABx (3.19)

where A is the eigenvalue and x represents the eigenvector. Eigenvalue determina-

a
- ;':q':S
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tion is found by the condition

DetIA - ABI 0 (3.20)

A similiar construction for the present problem yields 0

C1 - 2  -C 3  -C 4  -C 5  C, 0  0 0 0 &4

1 0 0 0 0 0 1 0 0 0a

o 1 0 0 0 - 0 0 I a ={0}. 0
0 0 00 0 0 0 1 ] &a}

0 0 0 1 0 0 0 0 0 .-

(3.21)

Referring to (3.20), if B is invertible a more efficient and equivalent form is

DetIB-A - AIl 0. (3.22)
0

The leading coefficient matrix, [Co}, is singular since the only entries are introduced

in the compliant boundary condition as

0 0 ... 0

0 0 ... 0

C, "(3.23)
0 0 ... 0

aN-l,O aN-i,l ... aN- 1 ,N

0 0 ... 0

To remove the singularity in [CoI an algebraic transformation is introduced

A (3.24)

where ,s is a real constant taken in this analysis to be (E-/0.35). The problem may '-.-

now be cast in the form of (3.22) giving

G-";'2:-........................................... " ....... t*.*.-.. -
"

**

Js.. -Z
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-C ,, -C CC'2 CO C I4 C''

A = 0 1 0 0 0 (3.25) " ,

0 0 1 0 0 ,
oooIo

. *J°

o 0 1 0

The eigenvalues of (3.25) may be obtained using the efficient QR algorithm.

The second method is derived by a matrix equivalent to synthetic division to

compute the dominant solvent. After applying the algebraic transformation (3.25),

the following results

D5(A) {Q 4 (A)}(AI - Y) + R., (3.26) 0

where 4" 4 C, , + C 1
Q4 (A) C, + (CY + CI)A + (CC2)A + '1 +

+(C 0 Y 3  C, y 2  C21' + C 3)A

+(COY 4 + e - C 2 }1
2 + C.3 1Y + C 4 )

and is considered to be the right quotient and R, is the right remainder of the

division of D,5(A) by (Al- Y). For (AI- Y) to be a factor of D5 (A), the remainder,

R,, must be set to zero. This is given by

Rr :C 0 Y 5 ± CY 4 + C2 V
3 4- C 3 Y 2 -C 4Y - CS 0. (3.27)

The square matrix, Y, is referred to as the right solvent. The Bernoulli iteration

method will be incorporated to solve the matrix polynomial (3.27). For such we

seek the dominant solvent which may be obtained from the iteration formula

-.

_ .]%' , ,._ -%, ",.,'%,.% ,,,'[,% %, -- , % ,'., .,. . -.., . . . " ,.,. .' - - - - ,. .. % . . , ,. -. , . . ,. ,% - . *. -. .. -
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where 1'. Y= Y2 Y3 0 and Y 4 = -CI 1 C1 .

Upon convergence, the eigenvalues are obtained by using the QR algorithm.
? ,* -.

The final global method to be considered was developed by Dennis., Traub and

Weber [371 to compute a dominant solvent. The algorithm is a generalization of

an algorithm for scalar polynomials by Traub [381. The method was discussed by

Morris [251 for the compliant problem approaching the limiting case of the rigid

wall problem. The method consists of two iterative steps. The first consists of

constructing the equivalent of the G-polynomials.

G,(Y) I (3.29a)

•.'. o%Gn+1 (Y) =G,(Y)Y r r)7D,(Y), (3-29b)

where -

G, (Y) r 2~fly ±~y+ 3 4 5~ly + (3.29c)

The second stage is given by

-(L) L -('1) (3.30a)

and
Y,+1 = ,)G L -) (3.30b).'

where L is the final G-polynomial built-up. The first stage of the algorithm is

equivalent to the Bernoulli iteration. The second stage is only linearly convergent,

but the asymptotic error constant may be made as small as desired bv increasing -.. ,

the number of iterations of the first stage. A subset of the eigenvalue spectrum may

be obtained by using the QR algorithm.

% %
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The final method to be considered is a locally convergent algorithm which

requires a sufficiently good initial guess for the refinement of a single eigenvalue. .

The local scheme is a refinement of Newton's method and has quadratic convergence.

The method is attributed to Lancaster [34] and an example of its implementation

may be found in Bridges and Morris [33]. The iterative formula is given by

5j+1 i - 2f(- j)/{jf f- Jf (-&)f, for i 0,1,2,... (3.31a)

where

f(-5j) = f T D-'(-Zi)D(I) (ai)} (3.31b)"£ ,..

and a
f (d) = T ,(D( 2 )(- ) f D- )VL) )2}. (3.31 c) %%

Tr{s} denotes the trace of matrix [s], D - 1 is the inverse of D and D() denotes

the ith derivative of D with respect to d. It should be noted that only one matrix

inverse is required. Also, as will be discussed in a later chapter, the eigenvectors

necessary for the surface property optimization may be conveniently computed as

an offshoot of this method making use of the matrix operations already performed. '-.

This concludes the outline of methods considered for eigenvalue determination.'.' ;
S

Actual global method comparisons for accuracy and efficiency were not in the main "

context of this investigation. The global schemes are necessary to determine a good

initial guess for the least damped eigenvalues for TSI and FISI to be refined in

the more efficient local method. The sensitivity of the eigenmodes to changes in %

the surface properties may then be performed, followed by the optimization of the

surface properties. With respect to comparisons and applications, reference may be

made to Bridges and Morris 33[ and Morris J25[.

ve, r. at -P
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3.4 A Model Eigenvalue Problem

When investigating a complex problem requiring numerical techniques as a

means to obtaining a solution, it is advantageous to devise a model problem with an "'

exact solution which captures as many of the characteristics of the physical problem

of interest as possible. One chooses a model problem such that the numerical

solution may be compared with the known exact solution. The compliant surface

problem has many identifiable characteristics most of which may be incorporated ,.'.

in the model.

The model boundary value problem is given by

.O.

E€"- 25---' + a 0 (3.32a)

with boundary conditions

0(I) =0 (3.32b)

3€( 1)) O' - ) 0. (3.32c) :!!!

A
where the primes represent derivatives with respect to z -i, + I. The eigenvalue,

ai. enters the boundary condition at a higher power than in the differential equation

which is similiar to the physical problem. A stiffness parameter, c, which may be

thought of as R - / , multiplies the highest derivative so as to simulate the viscous 0

terms in the physical problem.

The exact solution of (3.32) is given by

O(z) (e'2' ( s - . ( 3 - ,t)e - - Z) (333)

with

(5 3 - f2 )e" - (v 3 ± 3)e - ' 0 (3.34)
'-.5,.'-.,

S.."%
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and

EE

2 11/2 (3.35)

% --.

For a numerical solution the equation may be put in integral form, or

- 2E~ ~+ & ff + e, +~ elz =0. (3.36)

The function is approximated by a finite Chebvshev series

N

(z) = (3.37)

By substituting (3.37) into (3.36) and incorporating the Tau method, the problem

may be cast into a lambda matrix which is of order three in the eigenvalue and

given by %

D 3 (Z) C- 3 
+ e C 2 a + C 3 , (3.38)

where [Cj] are complex square matrices of order N+i. The leading coefficient ma- ,

trix, [Cof, is singular so transformation (3.24) is applied. The methods discussed in

the previous section apply in a similiar manner to that of the physical problem. ' .

The stage has now been set for solving the problem at hand and the methods of

solution for the nonlinear eigenvalue problems have been described. The accuracy

of the eigenvalues and eigenfunction for a given number of Chebyshev polynomials -.

will be tested for the compliant wall, the rigid wall, and the model problem in the
next chapter.-

nextchapter
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CHAPTER 4

NUMERICAL RESULTS OF EI(R;ENVX:LtE PROBLEMS

4.1 Model Problem

As was mentioned in the previous chapter, a model boundary-value problem

with characteristics similiar to the physical problem is used to test the numerical

methods. The global methods of solution were discussed in the previous chapter

and results from each method are given in Table (4.1) for c = 1.0 and 7J, = 0.25. .

As is shown, for a small number of Chebyshev polynomials the methods give a

comparatively similiar accuracy for the given number of iterations. The Bernoulli

and Traub iteration methods result in only a subset of the eigenvalue spectrum. As

can be seen the third eigenvalue is undetected by these methods for N=5. Since

only a sufficiently good initial guess is required for an eigenvalue, little else will .''

be needed in the form of demonstration and comparison with respect to the global ..

methods. A more indepth comparison of the these methods and the local method

may be obtained from Morris 251, Bridges and Morris '331 Benney and Orszag 1351.

and Dennis, Traub and Weber [37. "

The corresponding eigenfunction is obtained for the smallest eigenvalue in Table

(4.1). It is sufficient at present to view the accuracy of the method for a given

number of Chebyshev polynomials (N) and an imposed stiffness ((). In Figure (4.1)

a plot for N=5,7, and 10 with E = 1.0. shows the eigenfunction to be somewhat

independent of the number of polynomials. The numerical solution is essentially .-

indistinguishable from the exact solution. The problem is made stiff by requiring

the parameter ( to be small. The corresponding eigenfunctions for N - 10 and

1, 1/v 100. and 1, - 500 are shown in Figure (42). The numerical and exact,

solutions again prove to be indistinguishable. This provides much encouragement

' .. " ............. . ... . -- .
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Table 4.1: Accuracy of eigen,:alues relative to the number of Chebvshev polyno-

mials for the model problem. (t = 1.0 and ,= 0.25).

%.

linear companion matrix method: _______

N=5 N=7 I N=IO f Exact .

0.54543587 0.54541156 0.54541160 0.54541160

a2  0.98403404 0.98403205 0.98403009 0.98403009
a 3  1.41189790 1.41193160 1.41191660 1.41191660 1

a 4 i 1.76754890 1.76666540 1.76673320 1.76673320

Bernoulli iteration(15):
N=5 N=7 N=10 Exact

a1  0.54543587 0.54541156 0.54541160 0.54541160 .
a2 1 0.98408419 0.98402771 0.98407944 0.98403009 "

a3  1.41134490 1.41176970 1.41191660 "-
14  1.76755180 1.76666740 1.76673320 1.76673320 "

Traub iteration(5:4): -':-

SN=5 N=7 N=10 t Exact

!0

al 0.54543587 0.54541156 0.54541160 0.54541160 .,.,,

C(2 0.98399391 0.98403206 0.98402854 0.98403009.- .,
ce3 1.41192940 1.41.19248 1.41191660 :"- '

04 11.76754910 1.76666540 1.76671350 1.76673320

°%. =.N

5-'
.,_..
%. *..

Traubitertion5:4) ___________

I N5 N=7 F N".10,"Exact

a 1  0.454387 05454156 05454160 05454160

-"",.".'-' ','.-' " '.-' -. a2. 0"¢'/ . 98399391. 0, '. , , . "'L.9 4 306 0'.98402854;'/ .' . 98403009".:.'.:.=. - '"""" " -:
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for the use of this approach for the physical problem which is stiff. £ ,

! .
IW

1.0 4.2 Rigid Wall Case %.,,

The flow properties used are: the freestream velocity and density are 20 m/s

and 1000 kgim s , respectively;the Poisson ratio is 0.5;and the viscosity is .001002

kg/ms. These are obvious choices for the density and viscosity since water can

be found to have a density and viscosity of 1000-1020 kg/m 3 and .001002 kg/ms,

respectively. The compliant surface model is taken to be a flexible plate. As the

mass of the plate is increased, the characteristics of the problem become more

similiar to that of a rigid, flat surface. The rigid surface is achieved in the limit as

the mass coefficient, Cm, approaches infinity. The solutions obtained in this limit

should coalesce with published results for the solution of the Blasius velocity profile

over a flat plate. A common reference for comparison is the neutral stability curve.

For this comparison it is sufficient to use only fifteen Chebyshev polynomials to

obtain an adequate accuracy. The results are listed in Table (4.2) and a comparison

is made in Figure (4.3) with values from Jordinson 139 and Van Stijn and Van De

Vooren [40]. As is expected the results fall on a common curve. S

As with the eigenvalue, the normalized eigenfunction comparison must be made

with other numerical results since the exact solution is not known. Jordinson [391

referred to the case where R=998, 0 = .1122, and a = (.3086, -. 0057). Using N=15, S

a comparison results in nearly an exact fit as shown in Figure (4.4). The results

begin to deviate slightly as the distance from the wall increases. An observable

jump, or step, occurrs in Jordinson's analysis which is not found in the present S

calculations. Since the function is well behaved no physical explanation justifies

such a step. And finally a last comparison is made to determine the eigenfunction

sensitivity to the number of Chebyshev polynomials. Figure (4.5) is an eigenfunction S

V V

t. 'Z ' r , .- "t -'.. - ' . ' k I .- P ' . ' %
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Table 4.2: Values of R,d., and , for the neutral curve in the limit as C -w -c"

which as the compliant surface becoming a rigid plate. ( N 15 )"-S

RJ
2200.0 .3095 .1010
1400.0 .3356 .1185
0800.0 .3557 .1368
0520.0 .3014 .1193 ,
0536.5 .2753 .1067
0604.0 .2406 .0893
1364.0 .1450 .0433

•%I
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comparison for N=10,15, and 20 with the results by Jordinson corresponding to

R=336, J = .1297, and Z = (.3084,.0079). As with the model, the eigenfunctions

are relatively independent of the number of Chebyshev polynomials for the rigid

wall case to achieve sufficiently accurate solutions.

4.3 Compliant Wall Case

The discussion in this section will primarily be devoted to determining an

adequate number of polynomials required for a sufficiently accurate, or converged,

solution of eigenvalues and the corresponding eigenfunction. The case that will be

examined corresponds to 0 = 60 degrees in Table (4.3) obtained from Carpenter

and Morris 231 with R = 2240, and E = 0.055. Carpenter and Morris chose an

appropriate compliant coating density since rubber may have a density of 960-1300

kg/rM3 [41J. A swivel-arm angle of 0 = 60 for the present calculations enables a

comparison to be made with the results obtained from the sixth-order model of S

Carpenter and Morris. The complex wavenumber indicating the onset of instability .

is of interest in this investigation, so the convergence and accuracy of such are

computed. In Table (4.4) the wavenumber is shown to converge, but a large number S

of polynomials are required for a desired accuracy. The rigid wall case requires only

about one-third as many polynomials for a comparable accuracy. Carpenter and

Morris chose 48 polynomials for their stability calculations. With this choice the •

two-digits of accuracy obtained were sufficient for obtaining adequate results. The

cost of additional accuracy may be seen in Table (4.4) where a gain of two significant :..

digits results in approximately triple the computational cost. 0

By looking at the least damped wavenumber for the TSI wave over a frequency

variation, the frequency at which the largest growth rate occurs may be determined.

Shown in Figures (4.6) and (4.7) are plots of the wavenumber verses the frequency 0

............

- ...-....,~~~~~~. .....-.... . ......- ,..,... ... .-.-,..- .- .... -....... .,'. -, -.. , ' .
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Table 4.3: Optimum properties of compliant surfaces obtained from Carpenter

and Morris [23J.

o b E K B
(deg) (MM) (N/mm 2 ) (N/mm) (Nm)

0 F0.7350 1.385 0.354 0.61085 A 10-4

30 0.4540 0.942 0.191 0.97900 x 10-1
45 0.2500 1 0.667 0.119 0. 11520 x 10-5
60 0.1110 0.509 0.059 0.77300 x 1-

75 I0.0286 0.426 0.016 0.11100o X 10-8
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Table 4.4: Number of Chebyshev polynomials required for eigenvalue convergence

for R=2240, E = 0.055, 0 = 60 and B=0.08673 x 10-c. e

_ -$47.

N __cpu time(s)

32 .15805932,-.30840550 x 10- 2

40 .15799165,-.31577908 x 10-2

48 .15781832,-.31367360 x 10- 2 31.9 •

52 .15780772,-.31282229 x 10-2

56 .15780989,-.31412738 x 10- 2

60 .15781560,-.31414286 x 10-2

62 .15781491,-.31393189 x 10-2

65 .15781568,-.31395635 x 10-2
68 .15781581,-.31399292 x 10-2

69 .15781518,-.31392974 x 10-2

72 .15781542,-.31396316 x 10-2

75 .15781538,-.31396114 x 10-2 109.07

0

4

-. 5-.-

A'r-?

- .' ..
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compared with the results obtained by Carpenter and Morris. The results are

in agreement. These figures serve two basic functions. First, the revised model

formulation by Morris which is being used in the present calculations is shown to be

adequate in comparison to the higher order model of [231. And second, they, along

with the surface properties in Table (4.3) form a starting point, or reference point, in 7.

the optimization procedure. In conjunction with this, a comparison between these

=" results with a rigid surface makes evident the possibility of delaying transition. At a

frequency of 0.055 the compliant surface has a least damped wavenumber of -. 0031

while the rigid surface has a value of -. 01. This holds for the surface properties of

0 = 60. But this investigation seeks to show that by varying the surface properties,

reduced growth rates of instability or even complete stabilize-ion of the boundary

layer theoretically may be achieved.

A question as to why the large number of Chebyshev polynomials is required

arises for the compliant case; one possible answer may be found from analyzing

the eigenfunction behavior. The eigenfunctions for N=10,24, and 48 are shown in

Figure (4.8) for the least damped wavenumber of TSI. The corresponding results

show rather significant differences between the curves near the boundary. If one

were to make a comparison of the numerical aspects between the rigid and compliant

cases, more insight may be shed on the problem in question. The Chebyshev series

coefficients in general have the property that the leading coefficient is the largest

in magnitude. The remaining coefficients progressively get smaller as the order of

the terms increase. With such the very small. normally insignificant, trailing terms

may be neglected to obtain an accurate solution. If this were not the case, then ,,V.

essentially an infinite number of terms would be required for a solution. For the ' .-

rigid wall case, the smaller terms may be neglected and a relatively accurate solution

is obtained. The compliant case behaves in an unconventional manner. The

del
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leading four or five coefficients decrease in magnitude gradually as is expected; the

remaining coefficients drop-off to small values very rapidly and non-uniformly. As

before, it might be expected that the smaller trailing terms may be dropped and an

accurate solution would be achieved requiring fewer Chebyshev polynomials. This is %

a somewhat true statement since for N=IO a rather crude approximation is achieved. .

On the other hand, a sufficiently accurate solution requires the very small trailing

coefficients to remain a part of the solution. A possible reason for the necessity of

the additional terms may lie in the convergence characteristics of the function. It

may be possible that although the Euclidean norm of the system becomes small,

or converges, this may not be a sufficient convergence criteria. Rather the infinity- '
O

norm may not be small.

As a means to reduce the required number of Chebyshev polynomials, stretch-

ing factors were implemented to decrease the amount of stiffness in the problem.

No reduction in the number of required Chebyshev polynomials resulted. Instead of

using Chebyshev polynomials for the series approximation, improved convergence

of the series might be realized by using a different polynomial such as the Legendre

polynomial. Alternatively, a rnulti-&'omain approach may be attempted. The first

domain would extend from the compliant surface out in the cross-stream direction

a small distance. The outer domain is matched with the inner and proceeds to S

infinity. The solution of the inner domain would require a larger number of poly-

nomials for an accurate solution as compared to the outer. The idea behind such

an approach is that the combined solution may require less polynomials than the

single domain problem. --

A complete explanation for the behavior of the series approximation for the

compliant surface problem is unconclusive at present.

%- o *%. ,-
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CHAPTER 5

EIGENMODE SENSITIVITY TO BOUNDARY PARAMETERS

5.1 Introduction

An aspect of the surface property optimization is obtaining a technique to

determine the changes in the eigenmodes with respect to the boundary parameters.

A method which appears to have potential was used by Bridges and Morris [27,331 . '

to determine the frequency of the most unstable eigenvalue will be used here to

determine the sensitivity of the least damped eigenmodes to boundary parameter

changes. In Chapter 3 it was mentioned that Lancaster's local eigenvalue refinement

method could be extended to perform a portion of the optimization procedure. The

formulation of the method will be described and tested using the model problem

then extended to the physical problem. " A .-.

5.2 Model Problem Parameter

Since the optimization desired occurrs with respect to boundary parameters,

a modification is made to the model problem (3.32). A nondimensional surface

parameter, 0, is introduced giving the modified boundary condition.

i3¢(-i1) + q0'(-1) 0 (5.1)

The spectral discretization results in

[D3 (a~3)J{a} {0}, (5.2) ". "

.g. .s

where {a} is the right eigenvector and the lambda matrix is given by

-- ,% .
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D3(±) + C2-5 + C 3 . _

Before deriving the necessary relation, an additional vector must be defined and

a means of obtaining this vector as well as the right eigenvector must be discussed.

This vector may be defined such that

,' .. '.-

{a'O}D3(Z,,3)] = 0}, (5.3)

where {a} is referred to as the left eigenvector and H denotes the complex conju-

gate transpose. Relation (5.3) may also be cast in the form

3} (aa)j{a'j (0. (5.4)

This has a similar form to (5.2) for the right eigenvector;so a common technique

for determining the eigenvectors may be used. To compute a single eigenvector the

following inverse iteration is used

* , *%-~

D( ){Xk +} O , (5.5)

where a is a scaling, or normalizing, factor. The procedure converges in two or three

iterations using an initial guess of {xO} [1,1 ...1]T . The right eigenvector may be

conveniently computed using the already formed lambda matrix, [D!, from the local

method;the left eigenvector may similiarly be computed with the inverted lambda

matrix, ID -I, from the local method by-way-of the relation [A'I = AH I,'.

The necessary components for the differentiation have been computed, so the "- "

derivation of the sensitivity relations will follow. If the matrix system (5.2) is

%SA-I
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differentiated with respect to the boundary parameter, 3, the following may be

obtained. S

[D"'DIt{aja+ ' D + {a} + [D 3 ] -{0} (5.6)a# ao a# o

By multiplying (5.6) by {a-}H the last term is eliminated and the result is % %

a9 {a} (d[D 3]/a,3) {a}- ~~(5.7),..-.,
{a.}g[D 1 )(-i3) {a}

Recall that the parameter, J, appears only in the leading coefficient matrix, so (5.7) .

may be given by S

{a* cjCoId'{a}
O _ { a" } [Co] 3 { a}(5.8) -:..,:

ao {a'}H[30CoZ2 + 2CId + C2J{a} (5.8)

The matrix [D(1)1 may also be taken from the local method described in Chapter

3. From (5.8) a means has been obtained to determine the effect of an eigenmode

to changing surface parameters, or more specifically, the sensitivity of the least -

damped wavenumber to surface property variations.

The accuracy of (5.8) may be determined by a comparison of this method

with a finite difference approximation. The results in Table (5.1) for N = 11 and 0

= 0.25 show good agreement between the finite difference approximation and the V",

approach of (5.8) for the model problem.

5.3 Compliant Surface Parameters

The formulation for the sensitivity of the eigenmode to a boundary parameter

may similiarly be applied to the mechanical model representing a compliant surface.

% %* VP
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0.95 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * .59 .64, 0' -865x1- 3 0'

0.90~~~~~~5 .54 .96. 01 -. 79x1 .8X1-
100. 1.00 .94 1 -. 756 x 1 -' -277 x 1 -' 12 x10-

mode proble with9 x and3 -. 19 0.5 .3

0- 0:095 -. 995 -. 196 10 3 -. 196x 1 -3 .4 x10-

1.00 .0955 -.8344 x 10 -. 8492 x 101 .17 xi0
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Two basic approaches may be formed. The differentiation may be made with respect (.

to the non-dimensional coefficients or the dimensional physical properties.

The first approach leads to the followiug relations S-

_c_ { .}H [, o()} {a} ,.)- '

aB {a}H [D O( )J {a}.
____ {a-}H [ 3 si9{,i(1)} {a} (5.9b) '
aCT {a}" [D)()l {a}

0-__ {a-}H -- {7(-)} {a} (5.9)-

OCK {a}H [D(')(d) {a} 0

_% ,t'

__ {a}H %-2 ~(i} a

0CM a*}H[D~1 (~)1{a}(5.9d)

The second approach may be performed in two ways. Either determine the

values of (5.9) then multiply the result by an appropriate derivative resulting in

a-& ac, i
(5.10)O9C, 4s O9s '"'""

where s is the dimensional surface parameter of interest; or differentiate with re-

spect to the dimensional boundary properties explicitly. This approach yields the

following relations

O7 _ {a'} H [{( 3 E) (pU3S") - (oip,.)/(p,6"}{W(-1)}! {a} (5.11a)
b {a'} H D) (6)j {a}

6 ~~I II {a}a-5 (5. 11 b) '":"
6B {a.}% )

-) p (6){ {a }.-.,.

' \*
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0- {a'} H~ [(- 3 bsin2 0)/(poU2t){'(-1)}J {a} (5.11c)

E{a} g [D)() {a}{a)

- - {a"} H' [( 6)/(poU2){O'(-1)}I {a} (5.11d) 1.
aK {a}H [D ( )j {a}.

_ {a*}[ {a} (5.11e)

Both approaches should render identical results. The reason for giving both ap-

proaches is to verify the prospect of performing the analysis with the four nondi- •

mensional variables as opposed to the five physical variables. Depending on the

scope of the analysis for a given problem using the above differential technique, it .-..

may be more practical to use fewer nondimensional variables if possible. S

As with the model, the method is shown to be accurate in comparison to ',-"-

finite difference approximations. The results are compared in Table (5.2) with

N = 48, : 0.055, R 2240, and the surface properties corresponding to the case •

where 0 60 of Carpenter and Morris J231. A comparison showing the influence of

the number of Chebyshev polynomials on the accuracy of the differential is given in

Table (5.3). Obviously increasing the number of Chebyshev series terms increases

the number of accurate significant digits. To obtain an eigenvalue with two sig-

nificant digits of accuracy 48 polynomials are required. For the sensitivity with a

similiar number of polynomials two significant digits of accuracy are retained. This S

may lead one to conclude that the accuracy of the sensitivity measure is related -

to the eigenvalue accuracy of interest. So the choice of the number of Chebyshev .-I

polynomials required is based on the desired accuracy of the eigenvalue in question. 0

Up to this point the tools necessary for the optimization procenure have been

derived and analyzed. The local eigenvalue refinement method, the eigenvector

determination scheme, and the form, :a relating the sensitivity of eigenmodes to

.. ..

. - 4 -. .. . . .• 4 ° % .
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Table 5.3: Variation of the sensitivity of the eigenmode to changes in the boundary

property, B, with the number of Chebyshev polynomials. (B(Nm) =0.773 x 10-7.

N a________ Numer:azi/aB F.Diff.:a&/t3B
1 33 .15804017,-.00293839 213.16244,-78.565489 101.4,-80.12

38 .15757249,-.00295601 217.97623,-73.151999 218.0,-74.39
41 .15774825,-.00295831 216.67877,-75.295445 216.0,-76.20

48 .15781629,-.00313296 215.11468,-74.643011 215.0,-74.720
55 .15781285,-.00314088 214.94787,-74.624582 215.0,-74.64 F %. %f
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surface property changes may be linked together to complete this investigation. •

What remains is the introduction of a minimization procedure for multi-variable S.y

optimization problems and the presentation of a simple property variation approach. '

.1 "
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CHAPTER 6

OPTIMIZATION OF BOUNDARY PARAMETERS

6.1 Introduction

In the remaining segment of this discussion the importance of the surface prop-

erty changes on boundary layer stabilization will be shown. Numerical techniques -'

outlined in the previous chapter are utilized to measure the instability growth or

decay depending on the surface property variations.
V.-.

6.2 Minimization Method and Results

V.' In Chapter 5 a means was developed to determine numerically the sensitivity

of an eigenvalue to surface property changes. Relatively speaking, this may be

considered a gradient. This is verified by a comparison with the finite difference

approximation. These gradient measurements are the desired agents needed for the

optimization algorithm available.

Many algorithms have been proposed for minimizing a function of multi-

variable problems. Gradients are not necessary to obtain the desired results as

is explained by Powell 421; however, many benefits are found in the use of gradi-

ents. For instance, the relative influence of each property is made evident in the

gradient. In the present investigation, the influence of a property may be found to

have a dominant effect on the growth or decay of the instability as opposed to a

property having no effect on the instability. This is significant in the present prob-

lem for understanding the relative importance of the sensitivity of TSI and FISI

waves with the surface property changes. The measure of TSI sensitivity was given

in Table (5.2), and the FISI sensitivity measurements are given in Table (6.1). The

-* TSI sensitivity values are one or two orders of magnitude greater than the FISI

N -

r V ..-.
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Table 6.1: Sensitivity of the imaginary part of the wavenumber of FISI to

compliant surface property changes for 9 = 60 (Carpenter and Morris) and 0

6i .1462 x 10- 3 .

ai-/ab(mm) +.14149130 x 10- 3
-/idpm(kg/m 3 ) +.23184345 x 10- 7  V. .

&-/o9B(Nmm) -. 24979009 x 10-  %
ai-/aE(N/mm') -. 14693146 x 10- 4

O-/oK(N/mm 3 ) -. 21739922 x 10-2

.

S..?.

.

' ' 
d" 0

0,

'"V
, q

9



values. In theory, the stabilization of one class of instability leads to a destabiliza- N.

tion of the other class. From the results at present, a means has been developed

to measure the relative stabilizing-destabilizing effect of the two classes of instabil-

ities. This is significant since it indicates the dominant influence of TSI waves in

reference to the choice of compliant surface properties. So the optimization should

be concerned with the stabilization of the more critical TSI waves.

From this comparison, a multi-variable algorithm is sought to minimize the

TSI growth rate. Such an algorithm was made available by Dr. William Hagar of

the Mathematics Department at Penn State. The algorithm is based on the con-

jugate gradient method by Fletcher and Reeves [431. The code routinely calls the

surface properties, gradients, and least damped wavenumber during the iterations.

Beginning with the properties of Carpenter and Morris for 0 = 60, iterations are

performed and listed in Table (6.2). For three iterations a stabilization begins to

occur. This trend would continue and lead to a damped wavenumber. For each it-

eration a systematic repetition of property values is observed. This may occur due

to the relative invarience of the sensitivity values. In using this algorithm the prop-

erties must have comparable magnitudes or the iterative process leads to physically N.
% *,

unrealizable values. For example, the flexural rigidity which has a small magnitude

was varied and became negative. This may be avoided by limiting the band of

possible property values available to the algorithm. This is unnecessary at present .

since it proves more efficient computationally to use a simple variational approach.

. Although exact cpu accounts are unavailable, a relative comparison is possible. The

above method requires appoximately five minutes on the VAX 11/8580 as opposed

to four minutes for the approach that will follow. The above method did cotnfirm

that stabilization is theoretically possible through the appropriate surface property

combinations, but much more useful information is obtained from the

'e, "r

• . .
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Table 6.2: Minimization of instability growth rate by the conjugate gradient ap- .-. 

proach for B(Nm)=0.773 x 10' , pm(kg/m 3 )=1000, and an initial step of 0.05.
F,... %

Iteration b E K
(mmr) (N/mm') (N/rnm 3 ) ,..

Initial 1 .11100 .50900 .05900 -. 003133

1 .10836 .50835 .05559 -. 002791
110953 .50864 .05740 -.002946

.10836 .50835 .05559 -.002791

2 10716 .50806 .05402 -.002622

.10769 .50819 .05472 -.002698

.10716 .50806 .05402 -.002622

3 .10679 j .50797 .05351 -.002567

.10695 .50801 .05373 -.002592

.10679 .50797 .05351 -.002567

0
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.° d**
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S7" o "

• .n " • •
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method that will follow.

6.3 Variational Method and Results
For multi-variable problems it is advantageous to fix some variables. The char- "

acteristics of the remaining variables in the problem may then be observed. In the

present discussion the flexural rigidity, thickness, and modulus of elasticity of the

plate are functionally related, so the remaining parameters are fixed. This naturally

occurs for the plate density since the sensitivity measurements in Table (5.2) show

that the instability is not influenced significantly by density changes.

In this analysis a simple variation of properties is made. The properties are

governed by the following relation

Eb3  (6.1) -
12(1 - 1,2)'

where the Poisson's ratio, v, is 0.5. Two approaches were used. The first approach

% maintains an essentially constant value of the flexural rigidity and appropriately

%, varies the thickness and modulus of elasticity of the plate. The results are given in

Table (6.3) and plotted in Figures (6.1) and (6.2) against the least damped wave- -V
Irnumber of TSI. The results indicate that by simultaneously increasing the plate

thickness and decreasing the modulus of elasticity a stabilization of the boundary

layer may be realized. The second approach maintains essentially constant values

of the thickness and modulus of elasticity and varies the flexural rigidity. These

results are given in Table (6.4) and plotted in Figures (6.3) and (6.4). These results

indicate that by decreasing the flexural rigidity the boundary layer tends to become

stabilized. The most pronounced stabilization occurs when the plate thickness is -'.

increased and the modulus of elasticity is decreased. In both cases the FISI values

show little change. This may be expected as indicated by the sensitivity --

* 
o 

*'**. . . . . . . . . . . . . . . *

.. . -. . . . . ...... . . .-. ,. ...- ~ .- . . ... ..- . 1. - . . . . . o. : .- : .,-- .
-"."."," ", .- -"- ,,.' - "" "" " . " '"."-. .'. - -. ' - ,..... . -.-' . - ."- . '-. S.-.-,-, S',-.,.-'" ,* " -.- ,-
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Table 6.3: Sensitivity of least stable wavenumber of TSI and FISI to changes the

surface properties: B,E, and b with K(N/mm3 )=.059 and pm(kg/m) =1000.
,% 4~., %

B b E TSI FISI
(Nm) (mm) (N/m m 2  a,

.743x10 - 7  .1035 .6031 -. 3731x10 - 2  .1443x10 - 3

.743x10 - 7  .1085 .5235 -.3177x10-2 .1458x10 -3

" .743x10 -  .1135 .4573 -. 2637x10 2  .1472x10- 3

.743x10-7  .1185 .4019 -.2182x10-2 .1486x10-3

.743z10 - 7  .1235 .3550 -. 1699x10 - 2 .1500x10 3

.763x10 -  .1285 .3236 -. 1332x10 - 2  .1512x10 - 3

* .763x10 -  .1335 .2886 .0909xI02 .1526xI0 -

4. .763x10 -  .1385 .2585 -. 0495:10 2  .1540x10 3

.763x10 -  .1435 .2324 -. 0106x10 2  .1553x10 3

.763x10-7  .1485 .2097 +.0253x10 - 2  .1567x10 - -

.783x10 7  .1535 .1948 +.0496x10 - 2  .1579x10- 3,8, 10
- 7 

1-

.783x107  .1585 .1770 +.0786x10 2  .1592x10- "3

.783x10-  .1635 .1612 +.1058x10 2  .1606x10 3

.783x10-7  .1685 .1473 +.1305x10 - 2  .1620x10-3

.783x10-  .1735 .1349 +.1526x10 - 2 .1633x10- 3

- .803x10-  .1785 .1271 +.1664x10 - 2 .1647x10-3  V

-- .803x10-  .1835 .1170 +.184 .1661z103.. [10-7184x0 - 2  .6 1 10- 3 .-

.803x10 -  .1885 .1079 +.2002x10 -  .1675x10 -

.803z10-  .1935 .0997 +.2144xI0 2  .1690x10 3

.803x10- 7  .1985 .0924 +.2269x10- 2  .1705x10-3

.823x10- 7  .2035 .0879 +.2344x10 - 2  .1719x10-3

.823x10-  .2085 .0817 +.2448x10 2  .1734x10-3
-7 1%-

.823x10-  .2135 .0761 +.2539x10 -  .1749x10 -3

.823x10-  .2185 .0710 +.2618x102 .1765x10 3

.823x10- 7  .2235 .0663 ±.2688x10- 2  .1781x10 -3

. :,,_-,

.' 3"4-3' i0
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Table 6.4: Sensitivity of least stable wave-number of TSI and FISI to changes the .

surface properties: B,E, and b with K(N/mm 3 )=.059 and pm(kg/m 3 ) = 1000. S

B b E TSI FISI
(Nm) (mm) (N/mm 

.0743x10-  .1035 .6031 -. 3731x10 2  .1443x10 3

.0763xi0 - 6  .1035 .6194 -. 3878x10- 2 .1441xi0 - 3

.0783x10- 6 .1035 .6356 -. 4020x10l 2  .1439x10 - 3

.0803x10-6 .1035 .6518 -.4158x102 .1437x10 3

.0823x106  .1035 .6681 -.4289x10l 2  .1435x10- '

.084 3x1O
-G .1085 .5940 -.3917x10 -  .1448x10 3

.0863x10-  .1085 .6081 -.4014x10 2  .1446x10-

.0883x10-  .1085 .6222 -.4139x10-  .1445x10- 3

.0903x10-  .1085 .6363 -. 4262x10l 2  .1443x10 - ,

.0923x10-  .1085 .6504 -. 4381x10- 2  .1441X10 - 3

.0 9 4 3x 1 0
l G .1135 .5805 -.4016x10 - 2  .1455x0 - 3 "

.0963x10l 6 .1135 .5928 -. 4102x10 - 2  .1453xI0

.0983x10 -  .1135 .6051 -. 4214x10 - 2  .1452x10 - 3

.100 3 xIO-  .1135 .6174 -. 4324x10 - 2  .1450x10 - 3

.1023x10- 6  .1135 .6297 -.4431zI0 -  .1448x10-  •

.1043x10- 6  .1185 .5641 -.4074x10i 2  .1462x10- 3

.106 3x1O
-G .1185 .5749 -.4151x10-  .1461x10-

.1083x10-  .1185 .5858 -. 4253c10 2  .1459x10 3

.1103xlO -6  .1185 .5966 -.4353x10I 2  .1457x10- -,

.1123xlO
-G .1185 .6074 -.4451x10 -2  .1456x10- 3

.1143x10-  .1235 .5461 -. 4101xlO -  .1470x10 - 3 -

.1163x10-  .1235 .5557 -.4171x10-  .1468x10- .

.1183x10- 6 .1235 .5652 -. 4265x10 - 2  .1467x10 - 3 -

.1203x10-  .1235 .5748 -. 4357x10l 2 .1465xi0- 3 -

.1223x10- 6  .1235 .5843 .4448x10- 2 .1464x10- 3

.p I

.
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measurements. A more indepth explanation may be desired to justify that the re-

suits obtained with respect to FISI growth rate invariation are in agreement with •

theory. Carpenter and Garrad [18] developed a means to identify curves indicat-

ing expected stable and unstable regions for FISI. These curves are dependent on

the properties of an isotropic surface for the temporal case. If their analysis were _

extended to the spatial non-isotropic case, it seems reasonable to expect that "sta- "...

bility curves" may be determined. The property variation in the present analysis

may ensure that FISJ remains in a neutral or stable region. It may be found that -

the destabilization of FISI waves occurring due to an increase in the plate thickness

may be offset by the corresponding stabilization occurring due to an increase in the \.'-,'.

flexural rigidity. . p

The final variation is made with respect to the model swivel-arm angle. Shown

in Figure (6.5) is the effect on the least damped wavenumber for TSI to changes in

the swivel-arm angle for fixed surface properties. These properties correspond to

those given by Carpenter and Morris for 0 = 60 with R = 2240 and = 0.055. As % -

was found with the surface property changes, a stabilization may be realized. This

can primarily be achieved with an angle between 0 and 50. It should be noted that

the isotropic case corresponding to 0 0 has a stabilizing affect on the boundary

layer for these particular surface properties, Reynolds number and frequency. This

concludes the findings discovered through this investigation. Of course, further cases

may be performed, but this example shows the relative importance of the surface e--'-.,

properties on the instability and properties which may lead to a stabilization of the

boundary layer.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

The majority of this thesis has consisted of a description of the problem and

the building of the numerical tools necessary to fulfill the expectations of the inves-

tigation. The technique to determine the sensitivity of the instability with respect

to surface property changes was critical in understanding the importance of each

property. This measurement also provided a means to measure the relative influence

of the surface properties on both TSI and FISI waves. The minimization algorithm

seeks a decreasing gradient as a convergence criterion. In this analysis, however, the

gradients changed very little over the property range of interest. So an algorithm

which travels in a gradient dependent manner is less practical than a simple prop-

erty variation for the present problem of interest. It also proves computationally

more efficient and much more information is gained when the property variation

approach is used. In extending the present analysis, the surface properties may

be sought which give minimal sensitivity values. If this were attained, one might

expect that with small changes in flow conditions the instability growth rate would

essentially remain unchanged. The idea seems plausible but in fact the measure of

sensitivity over the range of present property values did not change significantly in

magnitude. This may be shown graphically by reviewing the slopes of the curves

in Figures (6.1)-(6.4).

In the final method, the variation approach gives a simple means to attain

stability curves with respect to surface properties. In a more complete sense, for a

multi-variable problem it is possible to attain "stability planes". In this investiga-

tion the range of surface properties centered around the values by Carpenter and

Morris. If manufacturable surface property combinations were available, it would

' .-.

0,:,€,,
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be possible to predict a coating most likely to delay transition. Assuming Kramer's IN %

conclusions concerning surface imperfections and water impurities resulting in no

performance loss hold, the predicted performance should be realized if the manu-

factured compliant coating is in accord with the mechanical model representation.

From the results obtained in this investigation, further research may commence

in many directions. Experimentally, a surface may be constructed and tested on

a model. The performance may then be compared with an uncoated model and

the predicted results of the mechanical model. Along a similiar route taken in this *. -'

study, the delay to transition may be analyzed for an optimal set of surface prop-

erties over a range of flow conditions. This is an obvious necessity for commercial .-

considerations. Of course, compliant coatings are not limited to laminar transition

analysis and are also being used in turbulence research. It would be of interest to

determine the desirable compliant coating properties in turbulent flow. These prop- -

erties could be compared with the "stability planes" which may be obtained from

the present analysis. Overlap regions may be found which when used in practice

delay transition and perform favorably after the transition to turbulent flow. This

would enhance the performance of a coated vehicle over a range of velocities.
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APPENDIX A

CHEBYSHEV SERIES FORMULAE

The Chebyshev polynomials, T,(x), are defined on the interval x C 1-1, + 11

and are derived from and related to the cosine function by

T,(cosO) = cosnO, (A.1) "ft*°t

with the initial few polynomials appearing as To(x) 1,Tl(x) x,

T 2 (x) = 2x 2  1,T3 (x) = 4x 3 - 3x, ect. The following trigonometric identity can be .

obtained.

cos(n + 1)0 = 2cosO cosnO - cos(n - 1)0 (A.2)

This results in a Chebyshev recurrence formula for higher order polynomials.

Tn+ (x) 2xT, (x) - ~(x) (A. 3)

The product formula is

T,(X)T,(X) - (T,1+m(i) + Tinm()) (A.4)

and the indefinite integral relation is
* ''

TI (x) n = 0
T,(x)dx I (To(X) -T 2 (x)) n = I (T,(4d (A. 5) ',.,

1nn1->2.

~N
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The series boundary conditions are 73

T,(1 (A .6)

and the differential relation for Chebyshev polynomials at the boundaries is

-0

P.. At

±- (n - 0)/(2k + 1). (A.7) "-At

dxPko
k=O•

Another efficient relation useful when performing the summation of a Cheby-

shev series is given by

',T,(x) = [b0(x) - b2 (z) ', (A.8)
?. ~n=o , ''

where the prime signifies that the leading term is to be halved. The recurrence -€

r 0
system needed to evaluate (A.8) is

b, (x) 2xb,(I (.r) - b71 2(X) + a, (A.9) •
.%.

b N- I (x) = ,, 2 (x) =0.

A Chebyshev formula useful in approximating a known function in a Chrbyshev 0

series can be defined as '.'

N

t (x) = ' 7 T,,(x), (A..lOa) AI,,.

where 4(x) is a known function at all points in the domain. The coefficients. o,

are given by 0

%• %

.%
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2 N

n= N 1 " D(xk)Tn (Xk) (A.l10b)
k=0

with

xk = cos - for k = ,1,2,...,N. 
(A.10c) %

The double prime on the summation signifies that the leading and trai!ing coeffi-

cients are to be halved. The final Chebyshev property that will be given prior to

listing practical integral formulae is the approximation of the differential of a known

function in Chebyshev series. The derivative is given by
da

~Pb, T,. bT(x) (A. 11a)
n=o

where

2
n pap (A. 1b)

p=n+i

p+nodd 

and

Cn f (A.11c1n > 0.,

The coefficients, an are obtained from the series approximation to the known

function, O(z).

To obtain the solution of a differential equation by a Chebyshev series approxi-

*: mation, it is convenient, although not necessary, to convert the differential equation

to an integral form. As such, a function is represented by the following finite,

Chebyshev series.

% ,
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¢(x) '3 'aT,(x) (A.12)

By applying the integral relation (A.5) appropriately and repeatedly, the following ,,

relations are obtained.

f N+1 

'i

. (x)dx = '&T(x) (A. 13a)

where 1

2n (an.i-an+I) for n > I (A.13b) .,.:-

N+2

2. J Oq(x)dX2= ZbnTn(x) (A.14a)
n =.

where

an- 2  -+>2 (A.14b)4n(n -1) 2(n 2 - 1) 4n(n + 1) ..or n >

4n4..

f f fN 
4-3 

,..

3. T (x) (A.15a)
n=0

where

bnan-3 3a,_ -I - 3an+ l _

8n(n - 1)(n - 2) 8n(n - 2)(n + 1) Sn(n - 1)(n + 2)
8 an+3  for n > 3 (A.15b)

8 n(n + 1) (n -42)

N 4--4-..-..

4. o()d 4 -_" b,T, (z) (A.16a)
n =0

4'.,7

*.'-,.

" '.1.'d

.~ .., . -. ... -,z, .. .. .. * . .'... 7',. V ... ., % ,.- ; . -.4/ .4%~ . 4.44, < .,. , *,. . . . 4 . .- ,.
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where

b n42a,-2 2 3 a,, 16n(n - 1)(n - 2)(n -3) 4n(n2 - 1)(n 3) + 8(n2  1)(n 2  4)

a, + 3) ~ + + for n > 4 (A.16b)
4n(n 2 - 1)(n + 3) + 16,(n + 1)(n + 2)(n + 3) -

When the coefficients in the differential equations are non-constant, the Cheby-

shev product formula (A.4) is needed. Introducing a function, u(x), representing
F. .,,

the non-constant coefficient, the following is obtained. , .I,

00

U= 'd,,T,(x) (A.17a)
n=O

with "

., 00

u(x) = 'u,T(x) (A.17b)

n=0

and

N~
%1 1 N%2 u2ao + 2 E (Uim-ni + um+n)am for n > 0 (A.17c) "

Integrations are performed in a straight forward manner using the integral re-

lation (A.5). The following integral relations prove useful for the problem presented

in this thesis. 7

1. u(x)(x)dx = ' d, T, (x) (A.18a)

n=O S
where

d,=1 1.3{-u:€"
.l ll a, -n - I 'n - nl I '

U -u I, - n -I)a, for n 1 (.18b1 O

• "°
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2. f ,f (,x/O(x,/d 2 d, T, T(x)/ (A.19a) -
n=0

where

_____ ______ _____ U -2 a + N jr-n+ -21 + Um±n-2

: 8n(n- 1) 4 T(,5 _1) + 8(n± + N) E 8n(n - 1)

Umn + Ulm-ni + Uim-n-21 + Um+n±2
( 4(,n2 

- 1) 8n(n + 1) 2a (A.19a)

Cf P N+3

3. u )¢( (x)dx 3 = L'dnTn(X) (A.20a):.
f f fn=0

where

dn Un- 3  un-I Un-. I

d [16n(n - )n -2 ) - 16n(n -- 1)(n - 2) 16n(n - 1)(n + 2)

16n (n + 1)1(n + 2)

fUirn-n.3i + Um-n -3 3(ulrmn.., m- U-.n-) ',

m=+ 16n(n - 1)(n- 2) 16(n + 1)(n - 2)

3(Ulm n_11 +i Urn+n-+-1) Ulm-n_31 4- ttrn- 3)4-- a. for n > 3(A.20b) "

... -:.16n (n - 1) (n -t- 2) 16n(n - 1)(n - 2) am fr qe(A2b

* N -4- 4

Jf4. Jf u(z()dz4 = d,, (x) (A.21a),

where
F,_ __ _ 4  Un-2 3 u"-

L 32n(n - 1)(n - 2)(n -3) 8n(n 2 - 1)(n -3) 16(n , - 1)(n 2 -4)

8n(, - 1)(n - 3) 32n(n -- 1)(n 2)(n -3)

11 - ,- 4 U u,, _ - n - 4 Urn -,,2 U(,,

32n n I- 1(n 'I(n - 3) nlnz Ik(" (n 1Inrl l)ln 2  ,I)

. ..... . , fo r P) 1i -.'2 1b ) ' "
I lln n 32nn 1(n 2 n (r -

0 r *
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These integral relations replace the appropriate integral terms in an integral

equation inorder to obtain a solution. The integral formulae require the order of

the Chebyshev terms to begin with the order of the integral equation. The proof of

this will not be given here, but can be found in [311.
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APPENDIX

BLASIUS" SOUTO

REPRESENTED~~4 BY A HBSVSRE

in histheisth soutin t te Basis euaionis ecesay ad i rere

Iner thsnheis the solutoritote bunau equationis nrecesrnsrpe

sete bye adhbeerieaieof( s thn oreratin thloiy endng acurat ens ofp

obtainingt a umerica solution vaisfirstnecesay Iun te silrity aiabes th

goerininga equation isaniordinar dife sreantial eaion of thel form oud Ti

f() 0320536151 (B.3)

fowhrmed to th Blsu varible andO, i the appropratecbondary-onditinsiar
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with 80

y =Re -  (B.5)

where is the physical coordinate with domain [0,0o). The solution obtained at

the desired points are then transformed back to the computational domain using

the inverse of (B.4). Taking the solution of a function(i.e., the Blasius solution),

F(z), given at all points in z C -i, + 11, a Chebyshev expansion of such is sought. S

N S

F(z) = Z 'fnT (z) (B.6)
n -

The prime signifies that the leading term of the series is to be halved. An exact

solution is obtained for N - oo. For a series expansion, the function must be

evaluated at the Chebyshev points

z,= Cos(7ri/N) i 0,1,2,...,N (B. 7) %

The series at these points is 4

d .p

N * % 5,

F(zj) = 'fT,(z,) . IB.)

rt=0

Using the relationship between the Chebyshev polynomial and the cosine fullw(Iil,

a curve-fitting formula can be obtained. Thus, the coefficients can ho, iyi,'lwt

using

fn"

-, , .,, " ,_y - -.-..,.. -, . .- , , . " -,, -" .. , .-, ... .-.. . . 0
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where the double prime signifies that the leading and trailing terms of the series

are to be halved. With the identity

T,(z,) =cos(nnI/g) (B.10)

the desired form of the curve-fitting formula is obtained. Making a substitution of

(B.10) into (B.9), the following results

N

fn - "f(z,)cos(irni/ N) . (B.11)

By making use of (B.11) with (B.6), the Chebyshev series representation of a func- F_

tion can be computed to a desired accuracy by taking N to be large.

The solution of the Blasius equation represented by a Chebyshev series is at-

tained with this curve-fitting formula. Sufficient accuracy was attained using an .

approximation with an order of N 99. The solution given in the computational

domain is shown in Figure (3.1) in Chapter 3. "' "

9
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